

Document Ref: 8.46 PINS Ref: EN010082

Tees CCPP Project

The Tees Combined Cycle Power Plant Project

Land at the Wilton International Site, Teesside

Applicant's Response to Examining Authority's Second Written Questions

Examination Deadline 5

The Planning Act 2008 (as amended)

Applicant: Sembcorp Utilities (UK) Limited Date: August 2018

DOCUMENT HISTORY

Document Ref	8.46		
Revision	1.0		
Author	Jake Barnes-Gott (JBG)		
Signed	JBG	Date	07.08.18
Approved By	Geoff Bullock (GB)		
Signed	GB	Date	07.08.18
Document Owner	DWD		

GLOSSARY

Abbreviation	Description			
AGI	Above Ground Installation			
AIL	abnormal indivisible loads			
AIL	abnormal indivisible loads			
AOD	above ordnance datum			
AQMA	Air Quality Management Areas			
ASI	Accompanied Site Inspection			
BAT	Best Available Techniques			
BCA	Bilateral Connection Agreement			
BCA	Bilateral Connection Agreement			
CAA	the Civil Aviation Authority			
CCR	Carbon Capture Readiness			
CCS	Considerate Constructors Scheme			
CCS	Considerate Constructors Scheme			
CEA	cumulative effects assessment			
СЕМР	Construction Environmental Management Plan			
CEMS	Continuous Emission Monitoring System			
CEMS	Continuous Emission Monitoring System			
СНР	Combined Heat and Power			
CL	Critical Load/Level			
CoCP	Code of Construction Practice			
ConsAg	Construction Agreement			
СТМР	Construction Traffic Management Plan			
СТМР	Construction Transport Management Plan			
DCO	Development Consent Order			
dDCO	draft Development Consent Order			
DMRB	Design Manual for Roads and Bridges			
EA	Environment Agency			
EA	Environment Agency			
EM	Explanatory Memorandum			
EMF	electromagnetic fields			
EN-1	National Policy Statement for Energy			
EPC	Engineering, Procurement and Construction			
ES	Environmental Statement			
ES	Environmental Statement			
FRA	Flood Risk Assessment			
GLVIA3	Guidelines for Landscape and Visual Impact Assessment, Third Edition			
HER	Historic Environment Record			
HIA	Health Impact Assessment			
HRA	Habitats Regulations Assessment			

Abbreviation	Description	
HRSG	heat recovery steam generator	
HSE	Health and Safety Executive	
IAQM	Air Quality Management	
ICNIRP	International Commission on Non-Ionising Radiation Protection	
IEMA	Institute of Environmental Management and Assessment	
LAQM	Local Air Quality Management	
LSE	likely significant effects	
LVIA	landscape and visual impact assessment	
MMP	Materials Management Plan	
NCA	National Character Areas	
NE	Natural England	
NE	Natural England	
NGET	National Grid Electricity Transmission Plc	
NGG	National Grid Gas	
NO ₂	nitrogen dioxide	
NO _x	nitrogen	
NPS	National Policy Statement	
NPS	National Policy Statement	
NTS	National Transmission System	
NTS	National Transmission System	
PA 2008	Planning Act 2008	
PEC/CL	Predicted Environmental Concentration/Critical Load	
PEIR	Preliminary Environmental Impact Report	
RCBC	Redcar and Cleveland Borough Council	
SNR	Strategic Road Network	
SPA	Special Protection Area	
SPD	Supplementary Planning Document	
SWMP	Site Waste Management Plan	
SWMP	Site Waste Management Plan	
ТА	Transport Assessment	
TRA	Transmission Related Agreement	
TRA	Transmission Related Agreement	
TVWT	Tees Valley Wildlife Trust	
WFD	Water Framework Directive	

CONTENTS

1	INTRODUCTION	4
	Overview	. 4
	SCU	. 4
	The Project Site	. 4
	The Proposed Development	. 5
	The purpose and structure of this document	. 5
2	THE APPLICANT'S RESPONSES	

TABLES

1 INTRODUCTION

Overview

- 1.1 This document has been prepared on behalf of Sembcorp Utilities (UK) Limited ('SCU' or the 'Applicant') in respect of its application (the 'Application') for a Development Consent Order (a 'DCO'). The Application was accepted for examination by the Secretary of State (the 'SoS') for Business, Energy and Industrial Strategy on 18 December 2017. The 'Examination' began on 10 April 2018.
- 1.2 SCU is seeking a DCO for the construction, operation and maintenance of a new gas-fired electricity generating station with a nominal net electrical output capacity of up to 1,700 megawatts ('MW') at ISO conditions (the 'Project' or 'Proposed Development'), on the site of the former Teesside Power Station, which forms part of the Wilton International Site, Teesside.
- 1.3 A DCO is required for the Proposed Development as it falls within the definition and thresholds for a 'Nationally Significant Infrastructure Project' (a 'NSIP') under Sections 14 and 15(2) of the Planning Act 2008 ('PA 2008').
- 1.4 The DCO, if made by the SoS, would be known as the 'Tees Combined Cycle Power Plant Order' (the 'Order').

SCU

- 1.5 SCU provides vital utilities and services to major international process industry customers on the Wilton International site on Teesside. Part of Sembcorp Industries, a Singapore-based group providing energy, water and marine services globally, Sembcorp Utilities UK also owns some of the industrial development land on the near 810 hectares (2,000 acre) site which is marketed to energy intensive industries worldwide.
- 1.6 SCU owns the land required for the Proposed Development.

The Project Site

- 1.7 The Project Site (the 'Site') is on the south west side of the Wilton International Site, adjacent to the A1053. The Site lies entirely within the administrative area of Redcar and Cleveland Borough Council ('RCBC') which is a unitary authority.
- 1.8 Historically the Site accommodated a 1,875 MW Combined Cycle Gas Turbine power station (the former Teesside Power Station) with the ability to generate steam for utilisation within the wider Wilton International site. The Teesside Power Station ceased generation in 2013 and was demolished between 2013 and 2015.
- 1.9 SCU has identified the Site, based on its historical land use and the availability of natural gas supply and electricity grid connections and utilities as a suitable location for the Project. In summary, the benefits of the Site include:
 - brownfield land that has previously been used for power generation;
 - on-site gas connection, supplied from existing National Grid Gas Plc infrastructure;
 - on-site electrical connection, utilising existing National Grid Electricity Transmission infrastructure;
 - existing internal access roads connecting to a robust public road network;
 - availability of a cooling water supply using an existing contracted supply (from the Wilton Site mains) and existing permitted discharge consent for effluent to the site drainage system
 - screening provided by an existing southern noise control wall, approximately 6 m in height;
 - potential for future Combined Heat and Power ('CHP') and Carbon Capture and Storage ('CCS'); and

- existing services, including drainage.
- 1.10 A more detailed description of the Site is provided at Chapter 3 'Description of the Site' of the Environmental Statement ('ES') Volume 1 (Application Document Ref. 6.2.3).

The Proposed Development

- 1.11 The main components of the 'Proposed Development are summarised below:
 - Work No. 1 a natural gas fired electricity generating station located on land within the Wilton International site, Teesside, which includes the site of a former CCGT power station, with a nominal net electrical output capacity of up to 1,700 MWe at ISO Conditions; and
 - Work No. 2 associated development comprising within the meaning of section 115(2) of the 2008 Act in connection with the nationally significant infrastructure project referred to in Work No. 1.
- 1.12 Please refer to Schedule 1 of the Draft DCO (Application Document Ref. 2.1) for more detail.
- 1.13 It is anticipated that subject to the DCO having been made by the SoS (and a final investment decision by SCU), construction work on the Project would commence in around the second half of 2019. The construction of the Project could proceed under one of two scenarios, based on SCU's financial modelling, as follows.
 - **Scenario One'**: two CCGT 'trains' of up to 850 MW are built in a single phase of construction to give a total capacity of up to 1,700 MW.
 - **'Scenario Two'**: one CCGT train of up to 850 MW is built and commissioned. Within an estimated five years of its commercial operation the construction of a further CCGT train of up to 850 MWe commences.
- 1.14 The above scenarios have been fully assessed within the ES.
- 1.15 A more detailed description of the Project is provided at Schedule 1 'Authorised Development' of the draft DCO (Application Document Ref. 2.1) and Chapter 5 'Project Description' of the ES Volume 1 (Application Document Ref. 6.2.5).

The purpose and structure of this document

1.16 This document forms part of a package of documents submitted by the Applicant for Deadline 5 of the Examination. It sets out the Applicant's responses to the Examining Authority's ('ExA') Second Written Questions – see Section 2 of this report.

2 THE APPLICANT'S RESPONSES

2.1 The Applicant's responses to the Second Written Questions provided by the ExA are set out in **Table 2.1** on the following pages.

REF NO.	RESPONDENT	QUESTION	LEAD	RESPONSE
2	Air Quality and En	nissions		
Q2.0.1	Environment Agency	Is the EA content with the Applicant's explanation (as summarised in [REP4-011]) of why near identical air modelling results occur in the PIER (where the turbine hall building height is 21.3m) and the ES (with a turbine hall building height 31m)?		
Q2.0.2	Applicant	 The ExA understands that the Applicant intends to submit a report on Carbon Capture Readiness (CCR) by Deadline 5. In the event of the CCR report finding that additional land is needed outside the order limits, the Applicant is asked to: confirm whether the findings of this report would have any implications for the conclusions of the ES and HRA; Provide a timetable for the preparation and execution of a S106 obligation within the examination period. 	SCU ERM	 The Applicant instructed a specialist consultant to produce a report (the 'Report') to further consider the CCR compliance of the Project. Following review of the Report, the Applicant can advise it has received a positive assessment of the CCR compliance of the Project, following a review by J.G. Yao, P.S. Fennell FIChemE and N. Mac Dowell FIChemE of Imperial College Consultants. The Report concluded that for a 1,520MWe CCGT power plant there is sufficient space within the Order limits for all of the assumed equipment, including: generation system (including use of auxiliary supply, steam supply), CO₂ capture equipment (including column sizing for absorber and stripper, number of trains), cooling systems, CO₂ dehydration and compression (including number of compressors per train), additional flue gas treatment (including scope to incorporate within existing facilities), solvent/sorbent storage and CO₂ transport details (including pipelines). This figure of 1,520MWe is derived on the basis of the original CCGT efficiencies used in UK DECC (now BEIS)'s CCR Guidance as amended by the Imperial College Assessment (Florin and Fennell, 2010). However these efficiencies are outdated; therefore, further assessment is being undertaken to determine the increase in MWe that can be achieved whilst remaining within the Order limits. Furthermore, the base case assessments used Air Cooled Condensers; however, it is proposed that the Project would utilise Hybrid Cooling Towers. These would have a considerably smaller footprint, thus enabling larger carbon capture process plant equipment to be installed within the confines of the Order limits and facilitating a further increase in MWe. The Applicant fully expects with the further work discussed above that it will be possible to demonstrate that a 1,700MWe power plant can meet the CCR compliance requirements. The Applicant proposes to provide a further CCR report/statement at Deadline 6.
Q2.0.3	Applicant Natural England	 The Applicant maintains a position that it is not feasible to undertake a quantitative assessment of in-combination air quality impacts [REP4-011]. The finding of no likely significant effects with regards to the assessment of in- combination effects lacks authoritative evidence in the form of quantitative data. In absence of such evidence it is not obvious how the Applicant has arrived at the outcome of no likely significant effect. The Wealden judgement clearly demonstrates the importance of addressing this issue as a matter of legal principle. It is also important to note that the in-combination assessment suggests that there is a 'widespread reduction in emissions' in the surrounding area. The robustness of this assertion would be increased if the evidence to support it was provided. In order to address the points raised above can the Applicant and NE explain what information is available to support the Applicant's position of ongoing improvements to background emission levels? The Applicant should also explain how, in absence of a quantitative in-combination assessment, the findings of no likely significant effect 	ERM	 The Project, in itself, does not result in significant impacts, with all impacts being below 1% of Long Term Critical Loads and Critical Levels. In combination effects are also anticipated to be insignificant, given that there is only one additional industrial facility that may be operational, that being the Tees Renewable Energy Plant. The EIA for the Tees Renewable Energy Plant has also concluded that in itself there would not be significant effects. The two plants are not co-located, and therefore any impacts are anticipated to arise on different locations and habitats. Furthermore, we believe that the process of completing a quantitative in combination effects assessment without the data from an EPC could result in an overly conservative assessment. Once an EPC has been appointed a quantitative assessment would be completed as part of the environmental permitting process. If significant effects are determined the next step would be to undertake further refinement of the dispersion modelling results. At the present time, the most sensitive habitat within each ecological receptor is assumed to coincide with the highest impact. In practice this is unlikely to be the case, as some sites are large. Following this, if significant impacts remain, then initial steps in the Appropriate Assessment process would be initiated. This, initially, comprises consideration of the site condition and species present and verifying whether the potential for an impact to arise in practice is actually possible. Further steps to assess the actual potential for harm to arise would follow. Furthermore, the overall air pollution and deposition at the habitat sites would continue to reduce in line with national trends. A key consideration in the Applicant's assessment is that in UK air quality has generally been improving in the long term, with substantial improvements since the 1960's-1980's in sulphur dioxide, oxides of nitrogen and transboundary pollution. This is clearly evidenced in the DEFRA document re

REF NO.	RESPONDENT	QUESTION	LEAD	RESPONSE
		have been derived.		 ('IED') captures within it the principles of continuous emissions improvements ('BAT') by all permitted industrial facilities. In addition, I the UKs fleet of coal fired power stations, have been taken off-line or substantially cut and continue to reduce under IED. This long-term downward trend cannot be ignored when considering in continuing with ever-tighter regulation on industrial emissions driving addition, emissions are reducing from road traffic and transboundary s emissions, and is a focal point of the Governments Clean Air Strategy. than compensate for the marginal increase in impacts that are predicted 'Wealden District Council v. Secretary of State for Communities and I and South Downs National Park Authority' considered the legal requir assessment. It did not stipulate the manner in which such assessment in quantitative as opposed to qualitative.
2.1	1	Uncertainty, assessment parameters and the DCO		
Q2.1.1 Q2.1.2	Applicant Applicant Image: state	 The proposed DCO as drafted [version 3, REP4-005] does not preclude the final design of the Proposed Development from having a stack height below that which has been assessed in the ES (75m). However, the Applicant's own assessment acknowledges [AS-010] that a stack height below 75m may result in an effect which is greater than that which has been assessed for some receptors [REP2-080] "the threshold for potential Likely Significant Effects would be exceeded at some habitats with a lower stack height." It is therefore apparent that, in absence of a parameter which precludes a stack height." It is therefore apparent that, in absence of a parameter which precludes a stack height less than 75m the proposed DCO if granted may result in a development that gives rise to likely significant effects which have not, or are different to what has been assessed in the ES. On that basis can the Applicant please explain the extent to which the assessment in the ES supports the development permissible by the proposed DCO if granted? The Applicant has confirmed in [REP2-080] the stack locations which have been utilised in the air quality assessment, as follows: Western Stack: 456437, 520398 Eastern Stack: 456525, 520438 The limits of deviation on the Works Plans allow for lateral movement of the stacks; it is proposed that the exact location of the stacks is confirmed at the Environmental Permitting stage. The Environment Agency expressed concerns [REP2-079] that changing the locations of the stacks from those specified in the air quality assessment may alter the findings of the assessment, and recommended that their locations are fixed by grid reference. In response, the Applicant has stated that movement of the stacks within the lateral limits of deviation would not materially change the outcome of the air quality assessment [REP3-003; REP4-011]. In light of the Applicant's response, can the EA confirm its position as to whether stack locations s	ERM WBD	The stack height of 75m is the maximum stack height. The dispersion demonstrated that with this stack height there would be no potential lik receptors, and no unacceptable impacts at human receptors. In the eve potential impacts of this will be addressed at the environmental permit required, further assessment steps would be needed initially refining th account the exact locations of sensitive habitats within each ecological Assessment ('AA') would be triggered in the event that the potential for refinement of the air quality impact assessment. If the AA determines significant impacts to ecological receptors, an EP will not be granted a be built at less than 75m. The Applicant has added some wording into the DCO to ensure that the 75m unless and until it has demonstrated that this reduction in stack he significant effects. An updated version of the draft DCO (Version 4) (submitted for Deadline 5 of the Examination.

provement with the adoption of Best Available n, large historical emission sources, including or for the few remaining, emissions have been

g in-combination effects. The trend is generally ng down impacts from existing facilities. In y sources. Agriculture is a major source of gy. These measures are fully expected to more ted to arise due to in-combination effects.

d Local Government, Lewes District Council uirement to carry out an in-combination t must be carried out, i.e. whether it should be

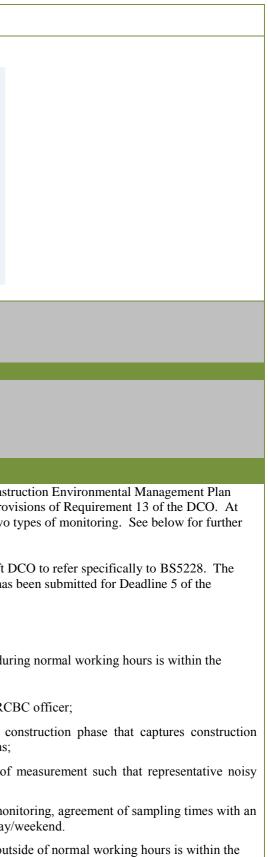
on modelling undertaken to date has likely significant effects at ecological event that a lower stack height is considered, the nitting ('EP') stage. In the EP process, if that air quality impact assessment to take into cal receptor, and if needed, an Appropriate l for likely significant effects remained after the nees that a lower stack height would result in d and the stack height would not be permitted to

the stack cannot be built at a height lower than c height does not give rise to any likely (Application Document Ref: 8.47) has been

REF NO.	RESPONDENT	QUESTION	LEAD	RESPONSE
Q2.1.3	Applicant	 The Applicant's position is that the stack diameter cannot be fixed until the gas turbine technology is selected; as such it would be determined as part of the Environmental Permitting process. The air quality assessment is based on an 'optimised' 8m stack diameter, with no sensitivity testing having been undertaken. It is possible that changing the diameter of the stacks from those specified in the air quality assessment may alter the findings of the assessment. The ExA considers that there must be a clear relationship between what has been assessed in the ES and what would be consented though the DCO. The Applicant is requested to explain the extent to which the assessment in the ES addresses these concerns or alternatively amend the DCO to reflect the relevant parameters in the ES. 	ERM	 The design and optimum operation of the turbine determines the optimum determines the optimum diameter. Different turbines have slightly different therefore the exit velocity, flow rate and stack diameter would change in significant impacts is not a function of diameter, but of plant capacity and stack diameter would offer no material benefit since each turbine will have therefore stack diameter. In the EP process, the finalised plant design we stack diameter are likely to limited. There would be negligible change in impacts as these fine-tunings are in Again, the EP would be based upon the finalised design, and this would relating to impacts on both human and ecological receptors, otherwise if The Applicant has added some wording into the draft DCO to ensure the the undertaker can demonstrate that a different diameter would not have can be agreed with relevant planning authority in consultation with the I (Version 4) (Application Document Ref: 8.47) has been submitted for D
Q2.1.4	Applicant	 The ES does not refer to the need for Selective Catalytic Reduction (SCR). Given the Applicant's intention to use a turbine which meets Best Available Technology (BAT), can the Applicant confirm if SCR is an option that is being considered? If yes: To what extent has the Applicant considered SCR in the ES and HRA? If SCR is implemented, could it affect the findings of LSE for the EIA or HRA? 	ERM SCU	SCR is not required to achieve BAT or sufficiently low NOx emissions SCR is not being considered for emissions abatement. The standard gas which are BAT, can meet the required emissions limits.
Q2.1.5	Natural England	 The Applicant describes "embedded measures" as turbines that meet current Best Available Technology (BAT) for NOx emissions and stack design to achieve sufficient dispersion [response to Q1.1.20, REP2-080]. The Applicant states that no further mitigation is required. a) To what extent does NE agree that BAT and stack design are 'embedded measures' and not avoidance or reduction measures as described in the Sweetman judgement? b) The Applicant's position is that the Sweetman judgement does not affect the Applicant's HRA screening exercise, on the basis that no mitigation measures have been relied upon [REP4-011]. Can NE confirm whether or not it is in agreement with the Applicant's position? 		
2.2		Biodiversity, Ecology and Natural Environment		

timum exit velocity from the stack. This in turn, lifferent requirements in this respect, and ge marginally between turbines. Risk of ty and stack height overall. Sensitivity testing of ill have a slightly different emission profile and m would take this into account and the finalised however that at this stage any changes to the
re marginal in comparison to the overall design. ould have to be compliant with guidance ise it would not be granted.
the that the stack diameter would be 8m unless have any new or materially different effects and the EA. An updated version of the draft DCO for Deadline 5 of the Examination.
ons to result in acceptable impacts at receptors.
l gas turbine dry low NOx combustor systems,

REF NO.	RESPONDENT	QUESTION	LEAD	RESPONSE
Q2.2.1	Natural England	Please confirm whether or not NE is content with the Applicant's revised HRA screening matrices [Tables H3.2 – H3.6, REP1-001].		
Q2.2.2	Environment Agency Natural England	The EA indicated at the ISH that it would like to run the Applicant's detailed air quality data through its model. The Applicant has now submitted this data to the Examination [REP4-010]. Do they EA or NE have any comments in this regard?		
Q2.2.3	Environment Agency	The ExA is aware that it is intended to submit an updated SOCG between the Applicant and the Environment Agency. The current version [Paragraph 3.9, REP2-061] states that: 'the EA does not yet agree that the HRA demonstrates that it is unlikely the Project will not have significant effects upon European Designated Sites alone or in combination with other projects and plans'.		
Q2.2.4	Applicant	Can the EA confirm whether there is any change to this position?For clarity the Applicant is requested to provide updated versions of ES	ERM	Updated versions of ES Annex G Tables 1.4 to 1.7 are included at Ap
Q2.2.4	Applicant	Annex G tables 1.4 to 1.7 (as agreed at the ISH on Environmental Matters), along with updated versions of NSER Tables 1-4, which populate the 'PEC'	LIN	Updated versions of NSER Tables 1-4, which populate the 'PEC' and
		and 'PEC/CL' metrics.		Appendix 2 to this report.
Q2.2.5	Natural England	 The Applicant has confirmed [REP1-001; REP4-011] that it is not relying on any mitigation to reach the conclusions of the NSER. The ExA notes that the draft DCO (R13)(2)(f) refers to '<i>mitigation measures designed to protect controlled waters</i>', with such measures described in the Updated Mitigation Summary Table [REP2-006] as primary and/or tertiary mitigation. The Applicant has confirmed that the River Tees is hydrologically connected to the Proposed Development via the existing Wilton International drainage system. To what extent does NE agree that the proposed measures to ensure safe discharge of water to the existing drainage system (as described in REP2-006] 		
		are 'embedded measures' and not avoidance or reduction measures as described in the Sweetman judgement?		
2.3		Draft Development Consent Order		
Q2.3.1	Applicant	Please provide an up-to-date schedule confirming all documents which are to be certified as forming part of the ES, to include all of the 'supplementary and further information' as described in the definition of the ES in Article 2 of the dDCO. A final version should be submitted by Deadline 8 at the latest.	WBD	This schedule has been prepared and the draft DCO has been amended An updated version of the draft DCO (Version 4) (Application Docum Deadline 5 of the Examination.
Q2.3.2	Applicant	Please confirm that all document references in Schedule 1, Part 2 'Requirements' reference the most up-to-date versions of the document e.g. 'CEMP', 'CTMP', CHP assessment, CCS proposal.	WBD	The draft DCO has been amended to reflect updated document reference An updated version of the draft DCO (Version 4) (Application Docume Deadline 5 of the Examination.
Q2.3.3	Environment Agency	Does the EA have any concerns regarding Article 6 of the dDCO [REP4- 005], which allows the Applicant to 'deviate vertically to any extent downwards as may be found necessary or convenient' (noting the Applicant's justification in this regard [Q1.3.12, REP2-080])?		
Q2.3.4	Redcar and Cleveland Borough Council Environment Agency	An updated version of the Construction Environmental Management Plan (CEMP) has been submitted at Deadline 4 [version 3, REP4-003]. Please confirm whether you are content with the contents of the updated CEMP and provide any comments you may have.		



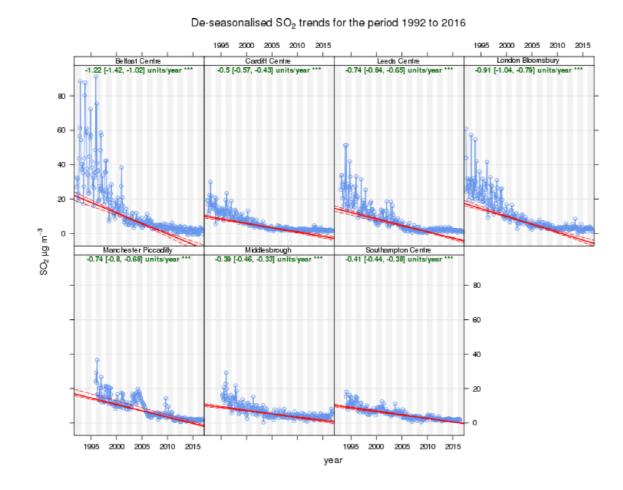
REF NO.	RESPONDENT	QUESTION	LEAD	RESPONSE
2.4	 I	Landscape and Visual		
2.4	Applicant	Can the Applicant confirm the size and placement of the air emissions monitoring platforms on the stacks? Please explain how these elements have been taken into account in the ES Landscape and Visual Assessment.	ERM SCU	The air emissions monitoring platforms on the stacks are shown on the photomontages [AS-016], as the rings near the tops of the stacks, and they have therefore been taken into account by the assessment of landscape and visual impact in the ES [APP-053]. Please see Drawing 1 below. The precise size and placement of the emissions monitoring platforms will be a matter for detailed design. Environment Agency guidance note M1 on stack testing, states: <i>"Recommend five hydraulic diameters" upstream and two hydraulic diameters downstream (or five hydraulic diameters from the top of the stack)."</i> In the case of the Project, 5 x hydraulic diameter = 40m, and 2 x hydraulic diameter = 16m. Therefore, the platform needs to be positioned -40 m above the point at which the flue enters the stack. If this is close to ground [i.e. 75 m - 16 m). The platform may need to be wider, circa 16 m in diameter, to allow deployment of the circa 4 m long sampling probe, whereas the platforms in the photomontages are approx. 12m. However, although in the photomontage the platforms appear as solid bands, the platforms may be wider, illustrating them as solid rings on the photomontages means that they are more prominent than they actually would be in reality. The platforms have therefore been adequately considered in the overall conclusions of the ES. Drawing 1

REF NO.	RESPONDENT	QUESTION	LEAD	RESPONSE
				Drawing 2
2.4.2	Redcar and Cleveland Borough Council	Is the Council content with the amendment to Requirement 5 of the draft DCO [version 3, REP4-005], which secures that the external lighting schemes for both construction and operation of the Proposed Development must accord with the Guidance Notes for the Reduction of Obtrusive Light GN01:2011?		
2.5		Vater Environment		
2.5.1	Environment Agency	Does the EA consider that the Applicant has addressed the points raised in the EA's WR regarding the Water Framework Directive (with the exception of opportunities for enhancement measures, which the ExA understands is to be covered in the forthcoming revision to the SOCG)?		
2.6	N	loise		
2.6.1	Applicant	Can the Applicant confirm what noise monitoring would be undertaken during construction to ensure that the threshold levels within BS5228 (as set out in Table 8.3 of the ES [APP-050]) would not be exceeded? For example, frequency and type of monitoring.	WBD ERM	 Details on noise monitoring would be developed in the detailed Constr ('CEMP') – following appointment of an EPC contractor – under prov this stage a monitoring programme is envisaged to be made up of two t detail. The Applicant has also updated Requirement 13(2)(a)(ii) of the draft D updated draft DCO (Version 4) (Application Document Ref: 8.47) has Examination. Monitoring: Monitoring to demonstrate that noise from construction activity duri BS5228 threshold levels: agreement of noise monitoring locations with an RCI development of a programme for the complete con activities that are representative of noisy conditions; agreement with an RCBC officer on frequency of activity is adequately sampled; and for any one construction phase that is subject to mon RCBC officer in terms of times of day and weekday/

REF NO.	RESPONDENT	QUESTION	LEAD	RESPONSE
				BS5228 threshold levels or whatever other levels may have been agree
				 agreement of noise monitoring location(s) with an Frisk of potential impact;
				• attended noise monitoring while the out of hours activ
				 communication between monitoring team and site s necessary.
				The following will be common to all monitoring activity:
				equipment used for noise monitoring will conform to
				Electroacoustics;
				• Sound level meters;
				Specifications;
				• Noise monitoring will be undertaken by a suitably qu
				Measurements will be undertaken during working h construction works are not occurring;
				• Monitoring will be undertaken for a minimum of 1 each monitoring period; and
				• If the noise monitoring shows that noise threshold I the works will be subject to an audit to confirm the ensure that noise is being reduced as far as is reason monitoring or mitigation will be established in consumptions.

reed with an RCBC officer: n RCBC officer based on an assessment of the activity is taking place; and te so that activity can be instructed to cease if n to the latest version of BS EN 61672-1:2013; qualified person; g hours, avoiding meal breaks and times when of 1 hour at each measurement location during

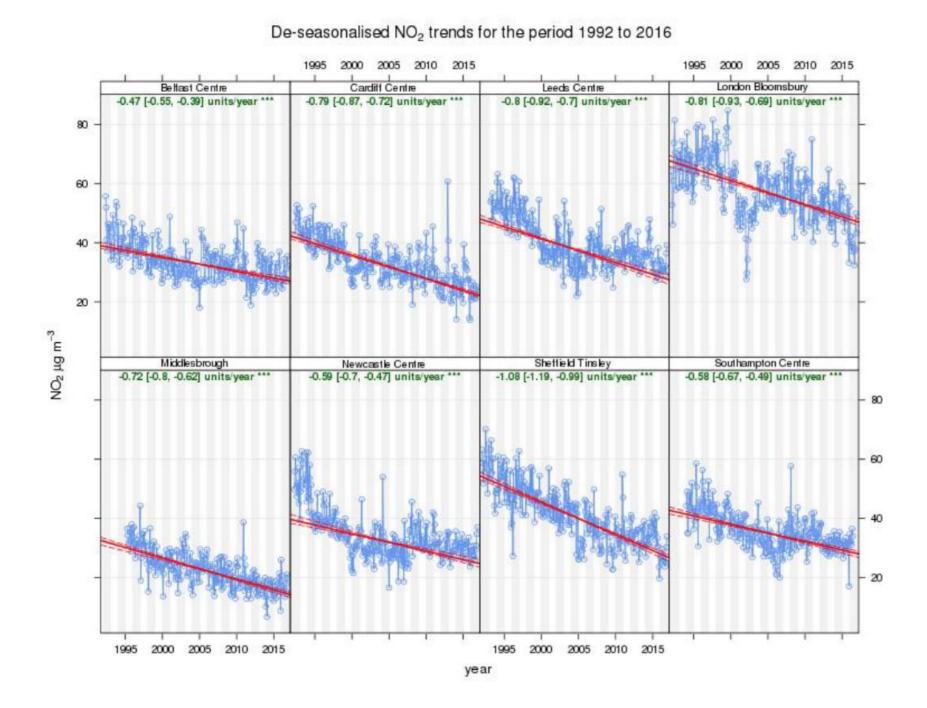
d levels are being exceeded on a regular basis, that best practicable means are being used to easonably practicable, and the need for further insultation with the RCBC officer.


APPENDIX 1: SUPPORTING INFORMATION FOR QUESTION 2.0.3

As discussed in the response to Question 2.0.3, emissions to air have reduced markedly and air quality substantially improved as a result. These reductions began to be realised in the 1950's and 1960's with the introduction of the Clean Air Acts. The trend towards reduced emissions continued in the 1980's and 1990's with ever more stringent emission limits on industry and the adoption of emission limits on road vehicles. From the 1990's to the present day, there has been continued, marked reductions in emissions as ever more stringent emission limits are brought in through the Industrial Emissions Directive, industrial technology is continually improved, road vehicle emissions decrease and coal is phased out of power generation and domestic homes. This is a trend that will continue into the future, with ever lower industrial emissions being driven by the adoption of BAT Reference Notes (Bref Notes) and ever more stringent vehicle emissions limits, and uptake of non-fossil fuelled vehicles.

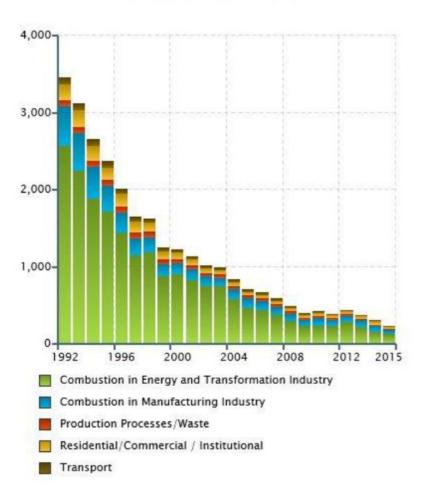
Defra published 'Air Pollution in the UK 2016' in September 2017¹. This document contains historical information on the trends in both emissions and ambient air quality. These data are very helpful to understand just how much improvement has been realised since the early 1990's, and the effect of these pollution reduction measures. Set out below are figures replicated from the Defra document, illustrating changes in both nitrogen dioxide and sulphur dioxide. The latter is included as the health of ecological sites is dependent upon both of these key pollutants acting together.

Figure 1: De-seasonalised trends in SO₂ concentration, 1992 to 2016 at 7 long running Automatic Urban and Rural Ambient Air Quality Monitoring sites


Figure 5-3 De-seasonalised Trends in SO₂ Concentration, 1992-2016 at 7 Longrunning AURN Sites

¹ Department for Environment, Food and Rural Affairs (2017) Air Pollution in the UK 2016 <u>https://uk-air.defra.gov.uk/assets/documents/annualreport/air_pollution_uk_2016_issue_1.pdf</u>

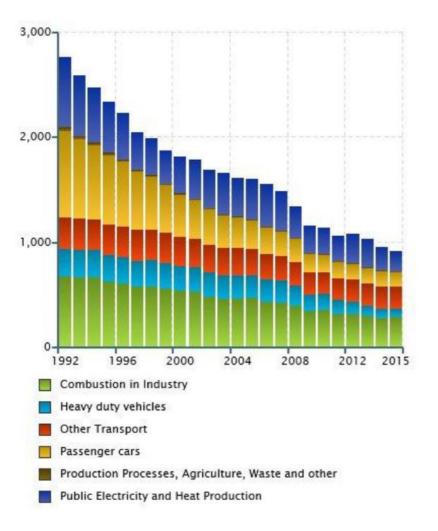
Figure 2: De-seasonalised trends in NO₂ concentration, 1992 to 2016 at 8 long running Automatic Urban and Rural Ambient Air Quality Monitoring sites



In both cases, the decrease over the period of 1992-2016 is clear and is apparent at all the sites, irrespective of the absolute concentrations. Of particular interest are the results from Middlesborough, noting that this site is close to the Sembcorp facility. The reduction in airborne pollution are directly correlated to emissions, as illustrated in the following figures.

Figure 3: Estimated annual UK emissions of SO₂ (kt) 1992-2015 from the UK National Atmospheric Emissions Inventory

Figure 5-4 Estimated Annual UK Emissions of SO₂ (kt), 1992 – 2015 Source: NAEI



Sulphur Dioxide (kilotonne)

Figure 4: Estimated annual UK emissions of NO_x (kt) 1992-2015 from the UK National Atmospheric Emissions Inventory

Figure 5-9 Estimated Annual UK Emissions of Nitrogen Oxides (kt), 1992 – 2015 Source: NAEI

Nitrogen Oxides (kilotonne)

APPENDIX 2: ES ANNEX G TABLES 1.4-1.7 AND NSER TABLES 1-4

PINS Ref: EN010082

Tees CCPP Project

The Tees Combined Cycle Power Plant Project Land at the Wilton International Site, Teesside

Volume 2 - Annex G1

Regulations – 6(1)(b) and 8(1)

Updated Annex G Tables 1.4 to 1.7

Applicant: Sembcorp Utilities UK Date: August 2018

Annex G1

Effects of Air Quality on Nationally and Locally Designated Sites

Updated Annex G1 Tables 1.4 to 1.7

Designated Site	Most Sensitive Habitat Feature	Critical Load ((Nitrogen Depo	CL) for Nutrient sition (kgN ha	Process Contribution (PC) (kgN ha	PC/C	L (%)		nd Nutrient Deposition Ia	PEC/	′CL (%)	Backgro	ound/CL	Potential Significant Effect (Yes/No)
		Min	Max		Min	Max	Min	Max	Min	Max	Min	Max	
Lovell Hill Pools SSSI	Coenagrion pulchellum variable damselfly	Sensitive	but no CL	0.0252	n/a	n/a	15.12	n/a	n/a	n/a	n/a	n/a	n/a
Tees & Hartlepool Foreshore & Wetlands SSSI	Littoral sediment supporting <i>Calidris alba</i> sanderling	20	30	0.0152	<u>0.076%</u>	<u>0.051%</u>	17.92	17.9	90%	60%	90%	60%	No
South Gare & Coatham Sands SSSI	Supralittoral sediment (acidic type) supporting Sterna albifrons little tern	8	10	0.044	<u>0.55%</u>	<u>0.44%</u>	12.74	12.8	160%	128%	159%	127%	No
Seal Sands SSSI	Littoral sediment supporting Calidris canutus knot	20	30	0.0203	<u>0.10%</u>	<u>0.068%</u>	13.86	13.9	69%	46%	69%	46%	No
Redcar Rocks SSSI	Littoral sediment supporting <i>Charadrius hiaticula</i> ringed plover	20	30	0.0375	<u>0.19%</u>	<u>0.13%</u>	15.68	15.7	79%	52%	78%	52%	No
Seaton Dunes & Common SSSI	Supralittoral sediment (acidic type) supporting Charadrius hiaticula ringed plover	8	10	0.024	<u>0.30%</u>	<u>0.24%</u>	12.74	12.8	160%	128%	159%	127%	No
Cowpen Marsh SSSI	Neutral grassland (Festuca rubra - Agrostis stolonifera - Potentilla anserina grassland)	20	30	0.086	<u>0.43%</u>	<u>0.29%</u>	18.48	18.6	93%	62%	92%	62%	No
North York Moors SSSI	Bogs (Calluna vulgaris - Eriophorum vaginatum blanket mire)	5	10	0.0318	<u>0.64%</u>	<u>0.32%</u>	23.52	23.6	471%	236%	470%	235%	No
Saltburn Gill SSSI	Broad-leaved, mixed and yew woodland (Fraxinus excelsior - Acer campestre - Mercurialis perennis woodland)	15	20	0.0274	<u>0.18%</u>	<u>0.14%</u>	34.72	34.7	232%	174%	231%	174%	No
Pinkney and Gerrick Woods SSSI	Broad-leaved, mixed and yew woodland (<i>Alnus</i> glutinosa - Fraxinus excelsior - Lysimachia nemorum woodland)	10	20	0.0257	<u>0.26%</u>	<u>0.13%</u>	27.86	27.9	279%	139%	279%	139%	No
Wilton Woods Complex LWS	Broadleaved, mixed and yew woodland - Acidophilous Quercus-dominated woodland)	10	15	0.1868	<u>1.9%</u>	<u>1.2%</u>	32.90	33.1	331%	221%	329%	219%	No
Eston Moor LWS	Fen, marsh and swamp – valley mires, poor fens and transition mires	10	15	0.12	<u>1.2%</u>	<u>0.80%</u>	20.02	20.1	201%	134%	200%	133%	No

Table G1.4 Predicted Nutrient Nitrogen Deposition at Ecological Receptors (Annual Mean) – for most sensitive qualifying feature of each site

Table G1.5 Predicted Acid Deposition at Ecological Receptors (Annual Mean) – for most sensitive qualifying feature of each site

Designated Site	Most Sensitive Habitat Feature	Critical Load (CL) for A	cid Deposition	(keq ha	Backgro Deposition	und Acid (keq ha	PC total as	% of CL total		ıl as % of total		e as % of L	Potential Significant Effect (Yes/No)
		CL max S	CL min N	CL max N	S baseline	N baseline	Low	High	Low	High	Low	High	
Lovell Hill Pools SSSI	Coenagrion pulchellum variable damselfly	Sensiti	ve but no CL		0.33	1.08	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Tees & Hartlepool Foreshore & Wetlands SSSI	Standing open water and canals supporting <i>Anas clypeata</i> shoveler	Sensiti	ve but no CL		0.47	0.78	n/a	n/a	n/a	n/a	n/a	n/a	n/a
South Gare & Coatham Sands SSSI	Supralittoral sediment (acidic type) supporting <i>Sterna albifrons</i> little tern	4.6	0.223	4.283	0.48	0.91	<u>0.073%</u>	0.070%	<u>33%</u>	<u>31%</u>	32%	31%	No
Seal Sands SSSI	Neutral grassland - acid grassland supporting <i>Tringa totanus -</i> redshank	4.6	0.438	4.498	0.45	0.99	<u>0.032%</u>	0.032%	32%	31%	32%	31%	No
Redcar Rocks SSSI	Littoral sediment supporting <i>Charadrius hiaticula</i> ringed plover	Not	sensitive		0.4	1.12	n/a	n/a	n/a	n/a	n/a	n/a	No
Seaton Dunes & Common SSSI	Supralittoral sediment (acidic type) supporting <i>Charadrius hiaticula</i> ringed plover	1.56	0.223	1.998	0.45	0.91	<u>0.086%</u>	<u>0.038%</u>	<u>68%</u>	<u>30%</u>	68%	30%	No
Cowpen Marsh SSSI	Neutral grassland (<i>Festuca rubra -</i> <i>Agrostis stolonifera - Potentilla</i> <i>anserina</i> grassland)	1.56	0.438	1.998	0.45	1.32	<u>0.031%</u>	<u>0.013%</u>	<u>89%</u>	<u>39%</u>	89%	39%	No
North York Moors SSSI	Bogs (Calluna vulgaris - Eriophorum vaginatum blanket mire)	0.183	0.321	0.54	0.47	1.68	<u>0.42%</u>	<u>0.30%</u>	<u>415%</u>	<u>298%</u>	415%	297%	No
Saltburn Gill SSSI	Broad-leaved, mixed and yew woodland (<i>Fraxinus excelsior - Acer</i> <i>campestre - Mercurialis perennis</i> woodland)	2.448	0.142	2.639	0.44	2.48	<u>0.074%</u>	<u>0.069%</u>	<u>111%</u>	<u>104%</u>	111%	104%	No
Pinkney and Gerrick Woods SSSI	Broad-leaved, mixed and yew woodland (<i>Alnus glutinosa -</i> <i>Fraxinus excelsior - Lysimachia</i> <i>nemorum</i> woodland)	2.435	0.357	2.792	0.41	1.99	<u>0.066%</u>	<u>0.054%</u>	<u>86%</u>	<u>70%</u>	86%	70%	No
Wilton Woods Complex LWS	Broadleaved, mixed and yew woodland	0.92	0.14	1.06	0.33	2.35	<u>1.3%</u>	<u>1.3%</u>	<u>254%</u>	<u>254%</u>	253%	253%	No
Eston Moor LWS	Dwarf shrub heath	1.59	0.71	2.3	0.27	1.43	<u>0.37%</u>	<u>0.37%</u>	<u>74%</u>	<u>74%</u>	74%	74%	No

Table G1.6 Predicted NOx at Ecological Receptors (Annual Mean)

Designated Site	Critical Level ((µg m-3)	Background Conditions (µg m ⁻³)	PC (µg m-3)	PC / CL (%)	PEC (µg m-3)	PEC / CL(%)	Background/CL (%)	Potential Significant Effect (Yes/No)
Lovell Hill Pools SSSI	30	15.8	0.175	<u>0.58%</u>	<u>16.0</u>	<u>53%</u>	<u>53%</u>	No
Tees & Hartlepool Foreshore & Wetlands SSSI	30	31.8	0.105	<u>0.35%</u>	<u>31.9</u>	<u>106%</u>	<u>106%</u>	No
South Gare & Coatham Sands SSSI	30	31.8	0.306	<u>1.0%</u>	<u>32.1</u>	<u>107%</u>	<u>106%</u>	No
Seal Sands SSSI	30	31.8	0.141	<u>0.47%</u>	<u>31.9</u>	<u>106%</u>	<u>106%</u>	No
Redcar Rocks SSSI	30	18.9	0.261	<u>0.87%</u>	<u>19.2</u>	<u>64%</u>	<u>63%</u>	No
Seaton Dunes & Common SSSI	30	31.8	0.167	<u>0.56%</u>	<u>32.0</u>	<u>107%</u>	<u>106%</u>	No
Cowpen Marsh SSSI	30	31.8	0.06	<u>0.20%</u>	<u>31.9</u>	<u>106%</u>	<u>106%</u>	No
North York Moors SSSI	30	11.3	0.221	<u>0.74%</u>	<u>11.5</u>	<u>38%</u>	<u>38%</u>	No
Saltburn Gill SSSI	30	11.8	0.095	0.32%	<u>11.9</u>	<u>40%</u>	<u>39%</u>	No
Pinkney and Gerrick Woods SSSI	30	7.92	0.089	<u>0.30%</u>	<u>8.01</u>	<u>27%</u>	<u>26%</u>	No
Wilton Woods Complex LWS	30	16.2	0.649	<u>2.2%</u>	<u>16.8</u>	<u>56%</u>	<u>54%</u>	No
Eston Moor LWS	30	16.2	0.834	<u>2.8%</u>	<u>17.0</u>	<u>57%</u>	<u>54%</u>	No

Table G1.7 Predicted NOx at Ecological Receptors (24hr Mean)

Designated Site	Critical Level (µg m-3)	Background Conditions (µg m ⁻³)	PC (µg m-3)	PC / CL (%)	PEC (µg m-3)	PEC / CL(%)	Potential Significant Effect (Yes/No)
Lovell Hill Pools SSSI	75	31.5	3.40	<u>4.5%</u>	<u>34.9</u>	<u>47%</u>	No
Tees & Hartlepool Foreshore & Wetlands SSSI	75	63.6	3.29	<u>4.4%</u>	<u>66.9</u>	<u>89%</u>	No
South Gare & Coatham Sands SSSI	75	63.6	3.18	<u>4.2%</u>	<u>66.8</u>	<u>89%</u>	No
Seal Sands SSSI	75	63.6	2.57	<u>3.4%</u>	<u>66.2</u>	<u>88%</u>	No
Redcar Rocks SSSI	75	37.8	1.98	<u>2.6%</u>	<u>39.8</u>	<u>53%</u>	No
Seaton Dunes & Common SSSI	75	63.6	1.96	<u>2.6%</u>	<u>65.6</u>	<u>87%</u>	No
Cowpen Marsh SSSI	75	63.6	1.34	<u>1.8%</u>	<u>64.9</u>	<u>87%</u>	No
North York Moors SSSI	75	22.6	9.19	12%	31.8	42%	No
Saltburn Gill SSSI	75	23.6	1.40	<u>1.9%</u>	<u>25.0</u>	<u>33%</u>	No
Pinkney and Gerrick Woods SSSI	75	15.8	3.60	<u>4.8%</u>	<u>19.4</u>	<u>26%</u>	No
Wilton Woods Complex LWS	75	32.4	23.8	<u>32%</u>	<u>56.2</u>	<u>75%</u>	No
Eston Moor LWS	75	32.4	29.8	<u>40%</u>	<u>62.2</u>	<u>83%</u>	No

PINS Ref: EN010082

Tees CCPP Project

The Tees Combined Cycle Power Plant Project Land at the Wilton International Site, Teesside

Volume 2 - Annex H

Regulations – 6(1)(b) and 8(1)

Updated NSER Tables 1-4

Applicant: Sembcorp Utilities UK **Date:** August 2018

Annex H

Habitats Regulations Assessment (HRA) – No Significant Effects Report (NSER)

Updated NSER Tables 1-4

APPENDIX A - AIR QUALITY MODELLING TABLES

Table 1Nutrient Nitrogen Deposition

Designated Site De n	Designatio n	Habitat Feature	Critical Load (CL) for Nutrient Nitrogen Deposition (kgN ha ⁻¹ yr ⁻¹)		Process Contributio n (PC) (kgN ha-1 yr-1)	PC/CL (%)		Background Nutrient Nitrogen Deposition (kgN ha ⁻¹ yr ⁻¹)	PEC (kgN ha-1 yr-1)	PEC/CL (%)		Background /CL		Potential Significant Effect (Yes/No)
			Min	Max		Min	Max			Min	Max	Min	Max	
Teesmouth		Sterna sandvicensis (Western												
and		Europe/Western Africa) - Sandwich tern -												
Cleveland	SPA	Supralittoral sediment (acidic type)	8	10	0.0392	0.49%	0.39%	18.48	18.5	231%	185%	231%	185%	No
Coast		Sterna sandvicensis (Western												
		Europe/Western Africa) - Sandwich tern -												
	SPA	Supralittoral sediment (calcareous type)	10	15	0.0392	0.39%	0.26%	18.48	<u>18.5</u>	185%	123%	185%	123%	No
		Sterna sandvicensis (Western												
		Europe/Western Africa) - Sandwich tern -												
	SPA	Supralittoral sediment	15	20	0.0392	0.26%	0.20%	18.48	18.5	123%	93%	123%	92%	No
		Sterna albifrons (Eastern Atlantic - breeding) -												
		Little tern - Supralittoral sediment (acidic												
	SPA	type)	8	10	0.0392	0.49%	0.39%	18.48	18.5	231%	185%	231%	185%	No
		Sterna albifrons (Eastern Atlantic - breeding) -												
		Little tern - Supralittoral sediment (calcareous												
	SPA	type)	10	15	0.0392	0.39%	0.26%	18.48	18.5	185%	123%	185%	123%	No
		Sterna albifrons (Eastern Atlantic - breeding) -												
	SPA	Little tern - Supralittoral sediment	15	20	0.0392	0.26%	0.20%	18.48	18.5	123%	93%	123%	92%	No
		Tadorna tadorna (North-western Europe) -												
	SPA	Common shelduck	20	30	0.0392	0.20%	0.13%	18.48	18.5	93%	62%	92%	62%	No
		Anas crecca (North-western Europe) -												
	SPA	Eurasian teal - Littoral sediment	20	30	0.0392	0.20%	0.13%	18.48	18.5	93%	62%	92%	62%	No
		Anas crecca (North-western Europe) -												
		Eurasian teal - Stranding open water and	Sensitive											
	SPA	canals	but no CL	0	0.0392									No
		Anas clypeata (North-western/Central	Sensitive											
	SPA	Europe) - Northern shoveler	but no CL	0	0.0392									No
		Calidris canutus (North-eastern												
		Canada/Greenland/Iceland/North-western												
	SPA	Europe) - Red knot	20	30	0.0392	0.20%	0.13%	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
		Calidris alba (Eastern Atlantic/Western &												
	SPA	Southern Africa - wintering) - Sanderling	20	30	0.0392	0.20%	0.13%	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
		Tringa totanus (Eastern Atlantic - wintering) -												
	SPA	Common redshank	20	30	0.0392	0.20%	0.13%	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
		Phalacrocorax carbo (North-western Europe) -	Sensitive		1									
	SPA	Great cormorant	but no CL	0	0.0392									No
		Sterna sandvicensis (Western			1									
Teesside		Europe/Western Africa) - Sandwich tern -												
pSPA	SPA	Supralittoral sediment (acidic type)	8	10	0.0407	0.51%	0.41%	18.48	<u>18.5</u>	<u>232%</u>	<u>185%</u>	231%	<u>185%</u>	No

esignated te	Designatio n	Habitat Feature	Critical Load (CL) for Nutrient Nitrogen Deposition (kgN ha ⁻¹ yr ⁻¹)		Process Contributio n (PC) (kgN ha ⁻¹ yr ⁻¹)	PC/CL (%)		Background Nutrient Nitrogen Deposition (kgN ha ⁻¹ yr ⁻¹)	PEC (kgN ha ⁻¹ yr ⁻¹)	PEC/CL (%)		Background /CL		Potential Significant Effect (Yes/No)
		Sterna sandvicensis (Western												
	CDA	Europe/Western Africa) - Sandwich tern -	10	15	0.0407	0.41.0/	0.079/	10.40	10 5	1050	100.0/	105%	100.0/	NT
	SPA	Supralittoral sediment (calcareous type)	10	15	0.0407	<u>0.41%</u>	<u>0.27%</u>	18.48	<u>18.5</u>	<u>185%</u>	<u>123%</u>	<u>185%</u>	<u>123%</u>	No
		Sterna sandvicensis (Western												
	CDA	Europe/Western Africa) - Sandwich tern -	15	20	0.0407	0.27%	0.20%	10.40	10 5	100.0/	93%	1000/	92%	NI-
	SPA	Supralittoral sediment	15	20	0.0407	<u>0.27%</u>	<u>0.20%</u>	18.48	<u>18.5</u>	<u>123%</u>	<u>93%</u>	<u>123%</u>	<u>92%</u>	No
		Sterna albifrons (Eastern Atlantic - breeding) -												
	CD 4	Little tern - Supralittoral sediment (acidic	0	10	0.0407	0.54.0/	0.44.9/	10.10	10 5	222.04	1050	001.0/	4.05.00	
	SPA	type)	8	10	0.0407	<u>0.51%</u>	<u>0.41%</u>	18.48	<u>18.5</u>	<u>232%</u>	<u>185%</u>	<u>231%</u>	<u>185%</u>	No
		Sterna albifrons (Eastern Atlantic - breeding) -												
	CD 4	Little tern - Supralittoral sediment (calcareous	10	45	0.0407	0.110	0.07%	10.10	10 5	1050	100.00	105%	1000/	
	SPA	type)	10	15	0.0407	<u>0.41%</u>	<u>0.27%</u>	18.48	<u>18.5</u>	<u>185%</u>	<u>123%</u>	<u>185%</u>	<u>123%</u>	No
	CD 4	Sterna albifrons (Eastern Atlantic - breeding) -	45		0.0407	0.05%	0.00%	10.10	10 5	1000	00%	100%	000	
	SPA	Little tern - Supralittoral sediment	15	20	0.0407	<u>0.27%</u>	<u>0.20%</u>	18.48	<u>18.5</u>	<u>123%</u>	<u>93%</u>	<u>123%</u>	<u>92%</u>	No
	ab 1	Tadorna tadorna (North-western Europe) -					0.1.10	10.10					(20)	
	SPA	Common shelduck	20	30	0.0407	<u>0.20%</u>	<u>0.14%</u>	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
	ab 1	Anas crecca (North-western Europe) -					0.1.10	10.10					(20)	
	SPA	Eurasian teal - Littoral sediment	20	30	0.0407	<u>0.20%</u>	<u>0.14%</u>	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
		Anas crecca (North-western Europe) -												
		Eurasian teal - Stranding open water and	Sensitive	_										
	SPA	canals	but no CL	0	0.0407									No
		Anas clypeata (North-western/Central	Sensitive	_										
	SPA	Europe) - Northern shoveler	but no CL	0	0.0407									No
		Calidris canutus (North-eastern												
	ab 1	Canada/Greenland/Iceland/North-western					0.1.10	10.10					(20)	
	SPA	Europe) - Red knot	20	30	0.0407	<u>0.20%</u>	<u>0.14%</u>	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	<u>No</u>
		Calidris alba (Eastern Atlantic/Western &												
	SPA	Southern Africa - wintering) - Sanderling	20	30	0.0407	<u>0.20%</u>	<u>0.14%</u>	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
		Tringa totanus (Eastern Atlantic - wintering) -												
	SPA	Common redshank	20	30	0.0407	<u>0.20%</u>	<u>0.14%</u>	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
		Phalacrocorax carbo (North-western Europe) -	Sensitive	_										
	SPA	Great cormorant	but no CL	0	0.0407									No
		avocet (Recurvirostra avosetta) - Littoral						1	1					
	SPA	sediment	20	30	0.0407	<u>0.20%</u>	<u>0.14%</u>	18.48	<u>18.5</u>	<u>93%</u>	<u>62%</u>	<u>92%</u>	<u>62%</u>	No
	l	common tern (Sterna hirundo) - Supralittoral							1	1				
	SPA	sediment (acidic type)	8	10	0.0407	<u>0.51%</u>	<u>0.41%</u>	18.48	<u>18.5</u>	<u>232%</u>	<u>185%</u>	<u>231%</u>	<u>185%</u>	<u>No</u>
		common tern (Sterna hirundo) - Supralittoral												
	SPA	sediment (calcareous type)	10	15	0.0407	<u>0.41%</u>	<u>0.27%</u>	18.48	<u>18.5</u>	<u>185%</u>	<u>123%</u>	<u>185%</u>	<u>123%</u>	<u>No</u>
		common tern (Sterna hirundo) - Supralittoral							1					
	SPA	sediment	10	20	0.0407	<u>0.41%</u>	<u>0.20%</u>	18.48	<u>18.5</u>	<u>185%</u>	<u>93%</u>	<u>185%</u>	<u>92%</u>	<u>No</u>
		common tern (Sterna hirundo) - Standing	Sensitive							1				
	SPA	open water and canals	but no CL	0	0.0407									<u>No</u>

Designated Site	Designatio n		Critical Load (CL) for Nutrient Nitrogen Deposition (kgN ha ⁻¹ yr ⁻¹)		Process Contributio n (PC) (kgN ha-1 yr-1)	PC/CL (%)		Background Nutrient Nitrogen Deposition (kgN ha ⁻¹ yr ⁻¹)	PEC (kgN ha⁻¹ yr⁻1)	PEC/CL (%)		Background /CL		Potential Significant Effect (Yes/No)
North York	SAC	Blanket bogs (* if active bog)	5	10	0.0318	<u>0.64%</u>	0.32%	23.52	<u>23.6</u>	<u>471%</u>	<u>236%</u>	<u>470%</u>	235%	No
Moors	SAC	Northern Atlantic wet heaths with Erica tetralix	10	20	0.0318	0.32%	<u>0.16%</u>	23.52	<u>23.6</u>	236%	<u>118%</u>	<u>235%</u>	<u>118%</u>	<u>No</u>
_	SAC	European dry heaths	10	20	0.0318	<u>0.32%</u>	<u>0.16%</u>	23.52	<u>23.6</u>	<u>236%</u>	<u>118%</u>	<u>235%</u>	<u>118%</u>	No
North York Moors	SPA	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Bogs	5	10	0.0318	0.64%	<u>0.32%</u>	23.52	<u>23.6</u>	<u>471%</u>	<u>236%</u>	<u>470%</u>	<u>235%</u>	<u>No</u>
	SPA	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Dwarf Shrub Heath	10	20	0.0318	<u>0.32%</u>	<u>0.16%</u>	23.52	<u>23.6</u>	<u>236%</u>	<u>118%</u>	<u>235%</u>	<u>118%</u>	No
	SPA	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Montane Habitats	5	10	0.0318	0.64%	0.32%	23.52	23.6	471%	<u>236%</u>	470%	<u>235%</u>	No
	SPA	Falco columbarius - Merlin - Dwarf shrub heath	10	20	0.0318	0.32%	<u>0.16%</u>	23.52	<u>23.6</u>	236%	<u>118%</u>	<u>235%</u>	<u>118%</u>	No

Table 2Acid Deposition

Designated	Designat			oad (CL) for on (keq ha-1		Backgrou Depositio yr ⁻¹)	nd Acid on (keq ha ⁻¹	PC total a total	s % of CL	PEC total total	as % of CL	Baseline a	as % of CL	Potential Significa nt Effect
Site	ion	Habitat Feature	Low Rang	ge		S baseline	N baseline	Low	High	Low	High	Low	High	(Yes/No)
			CL max S	CL min N	CL max N		Î					Í		í i
Teesmouth and Cleveland	SPA	Sterna sandvicensis (Western Europe/Western Africa) - Sandwich tern - Supralittoral sediment (acidic type)	1.56	0.223	1.998	0.48	1.38	0.14%	0.06%	93%	41%	<u>93%</u>	<u>41%</u>	No
Coast pSPA	SPA	Sterna sandvicensis (Western Europe/Western Africa) - Sandwich tern - Supralittoral sediment (calcareous type)	4	0.856	4.856	0.48	1.38	0.06%	0.00%	38%	12%	<u>38%</u>	<u>33%</u>	No
	SPA	Sterna sandvicensis (Western Europe/Western Africa) - Sandwich tern - Supralittoral sediment	Not sensitive											No
	SPA	Sterna albifrons (Eastern Atlantic - breeding) - Little tern - Supralittoral sediment (acidic type)	1.56	0.223	1.998	0.48	1.38	0.14%	0.06%	93%	41%	<u>93%</u>	<u>41%</u>	No
	SPA	Sterna albifrons (Eastern Atlantic - breeding) - Little tern - Supralittoral sediment (calcareous type)	4	0.856	4.856	0.48	1.38	0.06%	0.00%	38%	12%	<u>38%</u>	<u>33%</u>	No
	SPA	Sterna albifrons (Eastern Atlantic - breeding) - Little tern - Supralittoral sediment	Not sensitive											No
	SPA	Tadorna tadorna (North-western Europe) - Common shelduck	Not sensitive											No
	SPA	Anas crecca (North-western Europe) - Eurasian teal - Littoral sediment	Not sensitive											No
	SPA	Anas crecca (North-western Europe) - Eurasian teal - Stranding open water and canals	No informat ion											No
	SPA	Anas clypeata (North-western/Central Europe) - Northern shoveler	Sensitive but no CL											No
	SPA	Calidris canutus (North-eastern Canada/Greenland/Iceland/North- western Europe) - Red knot	Not sensitive											No
	SPA	Calidris alba (Eastern Atlantic/Western & Southern Africa - wintering) - Sanderling	Not sensitive											No
	SPA	Tringa totanus (Eastern Atlantic - wintering) - Common redshank	Not sensitive											No
	SPA	Phalacrocorax carbo (North-western Europe) - Great cormorant	Sensitive but no CL											No

	D			oad (CL) foi on (keq ha-1		Backgrou Depositio yr-1)	nd Acid n (keq ha ⁻¹	PC total total	as % of CL	PEC tota total	l as % of CL	Baseline a	s % of CL	Potential Significa — nt Effect
Designated Site	Designat ion	Habitat Feature	Low Rang	ge		S baseline	N baseline	Low	High	Low	High	Low	High	(Yes/No)
			CL max S	CL min N	CL max N			ĺ	Í				ľ	
	SPA	Sterna sandvicensis (Western Europe/Western Africa) - Sandwich tern - Supralittoral sediment (acidic type)	1.56	0.223	1.998	0.48	1.38	0.15%	0.06%	93%	41%	<u>93%</u>	<u>41%</u>	No
	SPA	Sterna sandvicensis (Western Europe/Western Africa) - Sandwich tern - Supralittoral sediment (calcareous type)	4	0.856	4.856	0.48	1.38	0.06%	0.00%	38%	12%	<u>38%</u>	<u>33%</u>	No
	SPA	Sterna sandvicensis (Western Europe/Western Africa) - Sandwich tern - Supralittoral sediment	Not sensitive											No
	SPA	Sterna albifrons (Eastern Atlantic - breeding) - Little tern - Supralittoral sediment (acidic type)	1.56	0.223	1.998	0.48	1.38	0.15%	0.06%	93%	41%	<u>93%</u>	<u>41%</u>	No
	SPA	Sterna albifrons (Eastern Atlantic - breeding) - Little tern - Supralittoral sediment (calcareous type)	4	0.856	4.856	0.48	1.38	0.06%	0.00%	38%	12%	<u>38%</u>	<u>33%</u>	No
	SPA	Sterna albifrons (Eastern Atlantic - breeding) - Little tern - Supralittoral sediment	Not sensitive											No
	SPA	Tadorna tadorna (North-western Europe) - Common shelduck	Not sensitive											No
	SPA	Anas crecca (North-western Europe) - Eurasian teal - Littoral sediment	Not sensitive											No
	SPA	Anas crecca (North-western Europe) - Eurasian teal - Stranding open water and canals	No informat ion											No
	SPA	Anas clypeata (North-western/Central Europe) - Northern shoveler	Sensitive but no CL											No
	SPA	Calidris canutus (North-eastern Canada/Greenland/Iceland/North- western Europe) - Red knot	Not sensitive											No
	SPA	Calidris alba (Eastern Atlantic/Western & Southern Africa - wintering) - Sanderling	Not sensitive											No
	SPA	Tringa totanus (Eastern Atlantic - wintering) - Common redshank	Not sensitive											No
	SPA	Phalacrocorax carbo (North-western Europe) - Great cormorant	Sensitive but no CL											No
	SPA	avocet (Recurvirostra avosetta) - Littoral sediment	Not sensitive											No
eesmouth nd	SPA	common tern (Sterna hirundo) - Supralittoral sediment (acidic type)	1.56	0.223	1.998	0.48	1.38	0.15%	0.06%	93%	41%	<u>93%</u>	<u>41%</u>	No

B				oad (CL) for on (keq ha-1		Backgrou Depositio yr-1)	nd Acid on (keq ha-1	PC total total	as % of CL	PEC tota total	al as % of CL	Baseline	as % of CL	Potential Significa
Designated Site	Designat ion	Habitat Feature	Low Rang	ge		S baseline	N baseline	Low	High	Low	High	Low	High	nt Effect (Yes/No)
			CL max S	CL min N	CL max N		Ĭ	ľ	ľ	Í			Ì	
Cleveland Coast Ramsar	SPA	common tern (Sterna hirundo) - Supralittoral sediment (calcareous type)	4	0.856	4.856	0.48	1.38	0.06%	0.00%	38%	12%	<u>38%</u>	<u>33%</u>	No
	SPA	common tern (Sterna hirundo) - Supralittoral sediment	Sensitive but no CL											No
North York	SPA	common tern (Sterna hirundo) - Standing open water and canals	Sensitive but no CL											No
North York Moors SAC	SAC	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Bogs	0.183	0.321	0.54	0.47	1.77	0.42%	0.30%	415%	298%	<u>415%</u>	<u>297%</u>	No
	SAC	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Dwarf Shrub Heath	0.15	0.499	0.792	0.47	1.77	0.29%	0.05%	283%	45%	<u>283%</u>	<u>45%</u>	No
	SAC	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Montane Habitats	0.15	0.178	0.471	0.47	1.77	0.29%	0.05%	283%	45%	<u>283%</u>	<u>45%</u>	No
	SAC	Falco columbarius - Merlin - Dwarf shrub heath	0.15	0.499	0.792	0	0	0.00%	0.00%	0%	0%	<u>0%</u>	<u>0%</u>	No
North York Moors SPA	SPA	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Bogs	0.183	0.321	0.54	0.47	1.77	0.42%	0.30%	415%	298%	415%	297%	No
	SPA	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Dwarf Shrub Heath	0.15	0.499	0.792	0.47	1.77	0.29%	0.05%	283%	45%	283%	45%	No
	SPA	Pluvialis apricaria [North-western Europe - breeding] - European golden plover - Montane Habitats	0.15	0.178	0.471	0.47	1.77	0.48%	0.05%	476%	53%	476%	53%	No
	SPA	Falco columbarius - Merlin - Dwarf shrub heath	0.15	0.499	0.792	0.47	1.77	0.29%	0.05%	283%	45%	283%	45%	No

Table 3NOx Annual Mean

Designated Site	Design ation	Critical Level	Background Conditions	PC (µg m-3)	PC / CL (%)	PEC (µg m-3)	PEC / CL(%)	Background/	Potential Significant
Designated one		(µg m-3)	(μg m-3)	ΓC (μg III 0)		1 Ες (μς ΙΙΙ σ)		CL (%)	Effect (Yes/No)
Teesmouth and Cleveland Coast SPA	SPA	30	31.8	0.272	<u>0.91%</u>	<u>32.1</u>	<u>107%</u>	<u>106%</u>	<u>No</u>
Teesmouth and Cleveland Coast pSPA	SPA	30	31.8	0.283	<u>0.94%</u>	<u>32.1</u>	<u>107%</u>	<u>106%</u>	No
Teesmouth & Cleveland									
Coast	Ramsar	30	31.8	0.272	0.91%	32.1	107%	106%	No
North York Moors	SAC	30	11.28	0.221	0.74%	<u>11.5</u>	<u>38%</u>	<u>38%</u>	No
North York Moors	SPA	30	11.28	0.221	0.74%	<u>11.5</u>	<u>38%</u>	<u>38%</u>	No

Table 4NOx 24 Hour mean

Designated Site	Designation	Critical Level	Background Conditions (µg m-3)	РС (µg m-3)	PC/CL (%)	РЕС (µg m-3)	PEC/CL(%)	Background/ CL (%)	Potential Significant Effect (Yes/No)
		(µg m-3)							
Teesmouth and Cleveland Coast	SPA	75	63.6	3.29	<u>4%</u>	<u>66.9</u>	89%	<u>85%</u>	No
Teesmouth and Cleveland Coast pSPA	SPA	75	18.5	4.89	<u>7%</u>	<u>68.5</u>	91%	<u>85%</u>	No
Teesmouth & Cleveland	Democra	75	(2)(2.20	4.0/	(()	20.9/	05.0/	NL
Coast North York Moors	Ramsar SAC	75 75	63.6 22.56	3.29 9.19	4% 12%	66.9 <u>31.8</u>	89% 42%	85% <u>30%</u>	No No
North York Moors	SPA	75	22.56	9.19	12%	<u>31.8</u>	42%	<u>30%</u>	No